The DBSCAN Clustering Algorithm by a P System with Active Membranes
نویسنده
چکیده
The great characteristic of the P system with active membranes is that not only the objects evolve but also the membrane structure. Using the possibility to change membrane structure, it can be used in a parallel computation for solving clustering problems. In this paper a P system with active membranes for solving DBSCAN clustering problems is proposed. This new model of P system can reduce the time complexity of computing without increasing the complexity of the DBSCAN clustering algorithm. Firstly it specifies the procedure of the DBSCAN clustering algorithm. Then a P system with a sequence of new rules is designed to realize DBSCAN clustering algorithm. For a given dataset, it can be clustered in a nondeterministic way. Through example verification, this new model of P system is proved to be feasible and effective to solve DBSCAN clustering problems. This is a great improvement in applications of membrane computing. Key-Words: DBSCAN; Clustering Algorithm; Membrane Computing; P System; Active Membranes
منابع مشابه
Density-Based Clustering by P System with Active Membranes on Commodity Recommendation in E-commerce Websites
With the Popularity of shopping online in people's daily economic life, the commodity recommendation mechanism in e-commerce platform is presented to help customers quickly and accurately find the suitable product. Using the possibility of changing membrane structure, a variant of P system with active membranes is proposed to solve commodity recommendation problems. In this paper, the commodity...
متن کاملبررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائهشده برای آن
Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کامل